

DIGITAL MICROSCOPY CAMERAS

>INFINITY ANALYZE Software

allowing complete camera control and advanced image acquisition and analysis. Features include:

- Real time video preview
- Measurement and annotation
- Archiving with search for date, author, description
 Fluorescent image composition including RGB Look-Up Tables (LUT)
- Single capture and time lapse
 Image stitching

- Advanced image processing
- Thumbnail worksheet
- Drag and drop measurement data to excel for analysis
- · Save and restore camera settings
- · Context sensitive help for all functions
- Optional focus enhancement

Easily integrate your INFINITY camera with 3rd party software applications

Camera Control

Explore Coalist	
M Theorem Tester Acad Installations Academics of Academic Academic Academics of Academic Academic Academic Academic of Academic Academic Academic Academic of Academic Academic Academic Academic of Academic Academic Academic Academic Academic of Academic Academic Academic Academic Academic Academic of Academic Academic Academic Academic Academic Academic of Academic Academic Academic Academic Academic Academic Academic Academic Academic Academic of Academic Aca	
Terretayo	
Constant Constant Experimental D 2000 1200 12000 Constant D 2000 12000 Constant D 2000 12000 Constant D 2000 12000 Constant D 2000 12000 Constant C	
I says interfactors	
Lecture Optional	
angle server	(A)
Conserva Constant International	. 7

> INFINITY 1 CMOS Cameras

Highlights

- 1, 3 and 5 megapixel resolution
- · Perfect for documentation and archiving applications
- Fast frame rates

The INFINITY 1 CMOS USB 2.0 cameras are designed to be a cost-effective, versatile solution for a variety of microscopy imaging applications. Features include auto white balance, full exposure control, programmable gain, sub-windowing and region of interest. An excellent fit for documentation and archiving applications.

Models

INFINITY 1-1C1.3 Megapixel CMOS Color CameraINFINITY 1-1M1.3 Megapixel CMOS Monochrome CameraINFINITY 1-3C3.1 Megapixel CMOS Color CameraINFINITY 1-5C5.0 Megapixel CMOS Color Camera

Applications

Brightfield, Darkfield, DIC, Live Cell Imaging, Histology, Pathology, Cytology, Defect Analysis, Semiconductor Inspection, Metrology

> INFINITY2 CCD Cameras

Highlights

- 1, 2 and 3 megapixel resolution
- Higher dynamic range for quantitative analysis
- Fast frame rates
- Low noise electronics

Equipped with a high-quality, Sony CCD sensor, INFINITY2 CCD USB 2.0 cameras offer excellent sensitivity, high dynamic range and a 12-bit digital output. Features include binning, auto white balance, full exposure control, programmable gain, sub-windowing and region of interest. Ideal for higher-end scientific, medical, ophthalmic and life science applications.

Models

INFINITY <i>2-1</i> C	1.4 Megapixel CCD Color Camera
INFINITY <i>2-1</i> M	1.4 Megapixel CCD Monochrome Camera
INFINITY <i>2-2</i> C	2.0 Megapixel CCD Color Camera
INFINITY <i>2-2</i> M	2.0 Megapixel CCD Monochrome Camera
INFINITY <i>2-3</i> C	3.3 Megapixel CCD Color Camera

Applications

Brightfield, Darkfield, DIC, Live Cell Imaging, Histology, Pathology, Cytology, Defect Analysis, Semiconductor Inspection, Metrology, Gel Documentation, Moderate Light Fluorescence

> INFINITY Camera Selection

High to Moderate Illumination Moderate to Low Illumination **High Sensitivity** 10-bit Quantitative Analysis 12-bit Quantitative Analysis 12-bit Quantitative Analysis Brightfield/Darkfield Brightfield/Darkfield Brightfield/Darkfield DIC DIC DIC Live Cell Imaging Live Cell Imaging Live Cell Imaging Histology/Pathology/Cytology Histology/Pathology/Cytology Histology/Pathology/Cytology Semiconductor Inspection Semiconductor Inspection Semiconductor Inspection Metrology Metrology Metrology Documentation and Archiving Documentation and Archiving Documentation and Archiving Gel Documentation Moderate Light Fluorescence **INFINITY**1 Gel Documentation Low Light Fluorescence INFINITY 1-1 Chemiluminescence INFINITY1-3 Bioluminescence INFINITY1-5 INFINITY2 Flow Analysis INFINITY2-1 GFP **INFINITY**X INFINITY2-2 FISH INFINITY X-21 INFINITY2-3 NIR FRET INFINITY4

INFINITY4-11

INFINITY3-1

> INFINITY3 Cooled CCD Cameras

Highlights

- 1 megapixel resolution
- Cooling to 25°C below ambient
- High signal to noise ratio for low light, long exposure applications
- Fast frame rates
- · Low noise electronics

For low light fluorescence applications the INFINITY3 cooled CCD USB 2.0 cameras offer cooling to 25°C below ambient. The Sonv ICX285 ExView HAD sensor has a very high dynamic range, excellent sensitivity and a 12-bit digital output. Features include binning, auto white balance, full exposure control, programmable gain, sub-windowing and region of interest.

Models

INFINITY3-1C 1.4 Megapixel Cooled CCD Color Camera 1.4 Megapixel Cooled CCD Monochrome Camera INFINITY 3-1M

Applications

Brightfield, Darkfield, DIC, Live Cell Imaging, Histology, Pathology, Cytology, Defect Analysis, Semiconductor Inspection, Metrology, Low Light Fluorescence. Chemiluminescence. Bioluminescence. Flow Analysis, GFP, FISH, NIR, FRET

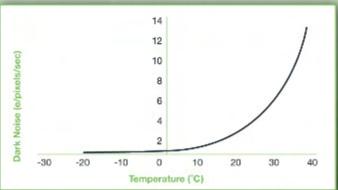
> INFINITY4 Large Format CCD Cameras

Highlights

- 11 megapixel resolution
- Large format sensor
- Superior light sensitivity with high fidelity color reproduction
- · Low noise electronics
- · F-mount lens adapter

The INFINITY4 camera series offers large format megapixel Kodak sensors for a wide field of view. The perfect choice for demanding high resolution imaging requiring excellent color rendition. Features include a 12-bit digital output, binning, progressive scan electronic shutter, full exposure control, auto white balance, programmable gain, sub-windowing and region of interest ideal for high end ophthalmic, medical, clinical and life science applications.

Models


INFINITY4-11C 10.7 Megapixel CCD Color Camera INFINITY 4-11M 10.7 Megapixel CCD Monochrome Camera

Applications

Brightfield, Darkfield, DIC, Live Cell Imaging, Histology, Pathology, Cytology, Defect Analysis, Semiconductor Inspection, Metrology, Gel Documentation, Moderate Light Fluorescence

Dark Current Noise vs. Temperature

Low Light and Long Exposure Times (Cooled CCD)

INFINITY3 cameras are cooled to 25°C below ambient to reduce dark current noise to a negligible level. This results in a 50% decrease in dark current noise for every 6 to 8°C in temperature below ambient.

Quantitative Analysis, Cooled CCD Quantitative Analysis (CCD) Demands a High Grayscale Level: CMOS (10-bit) 1024 Grayscale Levels CCD (12-bit) 4096 Grayscale Levels 4096 Grayscale Levels Cooled CCD (12-bit)

Bit Depth, Gray Levels and Sensor Dynamic Range

Bit Depth	Grayscale Levels	Dynamic Range
1	2	6 db
2	4	12 db
3	8	18 db
4	16	24 db
5	32	30 db
6	64	36 db
7	128	42 db
8	256	48 db
9	512	54 db
10	1024	60 db
11	2048	66 db
12	4096	72 db

>INFINITYX High Resolution CMOS Cameras

Highlights

- 1, 5, 10 and 21 megapixel resolution
- · Ideal for archiving and documentation
- Fast frame rates

Sub pixel shifting technology provides variable resolution capture at 1.3, 5, 10 and 21 megapixel resolution with precise color and good sensitivity. The INFINITYX USB 2.0 camera is an essential tool for clinical, life science and educational professionals where high resolution image archiving and publication quality images are critical. Features include auto white balance, full exposure control, programmable gain, sub-windowing and region of interest.

Models

INFINITY*X-21*C 21 Megapixel CMOS Color Camera INFINITY*X-21*M 21 Megapixel CMOS Monochrome Camera

Applications

High Resolution, Brightfield, Darkfield, DIC, Live Cell Imaging, Histology, Pathology, Cytology, Defect Analysis, Semiconductor Inspection, Metrology

Comparing USB 2.0 to FireWire

Video performance in digital cameras is defined by the maximum frame rate at a given resolution and is measured in frames per second (fps). Both FireWire and high-speed USB 2.0 digital cameras exhibit almost identical frame rates by resolution. These frame rates are usually limited by the sensor read-out rate — not the physical interface. As an example, a 1 megapixel CCD sensor using a FireWire or USB 2.0 interface is limited to 15 or 30 fps depending on the camera model. As resolution increases, frame rates decrease.

CONNECTION	TRANSFER RATE	FRAME RATE	INSTALLATION
USB 2.0	480 MBIT/S	15 FPS	PLUG-AND-PLAY, 99% OF COMPUTERS HAVE USB 2.0 PORTS
FIREWIRE	400 MBIT/S	15 FPS	MOST COMPUTERS NEED A FIREWIRE CARD INSTALLED — SOME LAPTOPS MAY NOT HAVE THE SPACE REQUIRED

USB 2.0 is an ideal interface for scientific cameras, offering plug-and -play with all computers, while providing more than enough throughput for it's selected image sensors.

> Camera Specifications

Mega- pixel	Resolution	Sensor	FPS	Bit Depth	Read Noise	Binning/ Sub Sampling	Region of Interest	Cat # (Color/Mono)
INFINITY	INFINITY 1							
1.3	1280X1024	1/2" CMOS	15	8 or 10	20 e-	N/Y	Y	INFINITY 1–1C or M
3.1	2048X1536	1/2" CMOS	6	8 or 10	20 e-	N/Y	Y	INFINITY 1–3C
5.0	2592x1944	1/2.5" CMOS	5	8 or 10	20 e-	N/Y	Y	INFINITY 1–5C
INFINITY	INFINITY2							
1.4	1392x1040	1/2" CCD	15	8 or 12	12 e-	Y/Y	Y	INFINITY2-1C or M
2.0	1616x1216	1/1.8" CCD	12	8 or 12	12 e-	Y/Y	Y	INFINITY2–2C or M
3.3	2080×1536	1/1.8" CCD	5	8 or 12	12 e-	Y/Y	Y	INFINITY <i>2–3</i> C
INFINITY	INFINITY3							
1.4	1392x1040	2/3" Cooled CCD	15	8 or 12	8 e-	Y/Y	Y	INFINITY3-1C or M
INFINITY	INFINITY4							
10.7	4008x2672	35mm Format CCD (43.3mm)	3.5	8 or 12	12 e-	Y/Y	Y	INFINITY4–11C or M
INFINITY	INFINITY <i>X</i>							
1.3, 5 10, 21	1280X1024 to 5120X4096	Pixel Shifting 1/2" CMOS	15 (SXGA)	8 or 10	20 e-	N/Y	Y	INFINITY <i>X-21</i> C or M

> INFINITY Camera Specifications

- Auto/Manual Exposure
- Auto/Manual White Balance
- Programmable Gain, 1 to 10X Optimizable
- INFINITY 1, 2, 3, X --- C-Mount Lens Adapter, INFINITY4 --- F-Mount Lens Adapter

- Power: INFINITY 1 & 2 USB Bus Power INFINITY 3 External 5VDC-500mA INFINITY 4 External 12VDC-1A INFINITY X External 6VDC-500mA
- Operating Temperature 0°C to +50°C
- Operating Humidity 5% to 95%, Non-condensing

> OEM Custom Camera Design

the INFINITY camera line through our custom camera development.

Our unique options for OEM custom software features and hardware camera design offer the following advantages:

- Reduce Development Costs
- Differentiate from the Competition

For more information e-mail scientificsales@lumenera.com.

Mac Plug-In for INFINITY Cameras

- A Mac Plug-In for all INFINITY cameras is now available
- Compatible with Mac OS 10.4 (requires Quick Time V7)
- Visit Lumenera's web site to download the latest version

7 Capella Court, Ottawa, ON, Canada K2E 8A7 Phone: 1.613.736.4077 Fax: 1.613.736.4071 www.lumenera.com